Assessment of Current Density Singularity in Electromigration of Solder Bumps

Pridhvi Dandu and Xuejun Fan Department of Mechanical Engineering Lamar University PO Box 10028, Beaumont, TX 77710, USA Tel: 409-880-7792; xuejun.fan@lamar.edu

Abstract

This paper investigates the current density singularity in electromigration of solder bumps. A theoretical analysis is performed on a homogenous wedge with arbitrary apex angle, $2($, when the current flow passes through. A potential difference is applied at a distance far away from the tip of the wedge. It is found that current density singularity exists at the tip of the wedges when the angles¹ \cdot . The acute angles represent the corner configuration of the actual solder bump and the interconnect. The current crowding in bumps is a where is resistivity of the material. The boundary conditions (BC) required on the faces of wedge are: at for all r (5) Substituting the BC, in the Equation (4) leads to \equiv \pm \pm ߲ߠ ൌെ ൌ Ͳߠ ൌ േ ߨെߠ ሺሻ Since , at we have ൌ Ͳሺሻ From the governing equation of electrostatics, we have ܸ ൌ Ͳሺͺሻ where \cdots \cdots \cdots \cdots \cdots , substituting the assumed voltage function, into the Equation (8), we get a homogeneous linear differential equation with constant coefficients as shown ᇱᇱ ݂ ൌ Ͳ , obtained by solving the above equation is \mathbb{R} \mathbb{F} $\mathbb{$ where the constants *A* and *B* are to be determined. Applying Equation (7) to the wedge faces which are at angles $($ $)$
and , to the general form of in Equation (10) , to the general form of produces a system of two simultaneous equations with unknown constants. These equations can be represented in a matrix form as: α ^{\bar{e}} $-\vec{\mathbf{A}}$ $\mathbf{G}\mathbf{e}$, $\mathbf{G}\mathbf{e}$ Ĩ. Since Equation (11) is homogeneous, the determinant of coefficient matrix must be equal to zero in order to get meaningful solutions. So, <u>► ਪ੍ਰ</u>ਾ and, the roots of this equation are obtained as follows, $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{\$

Substituting the value of in the voltage function, we have the general solution for a wedge with arbitrary apex angle, $2($):

For

In Equations (18) and (19) the exponential of r is negative for both the angles. When r approaches zero, - approaches infinity. Subsequently current density also equals to infinity.

Figure 7 Three different mesh schemes

οܬ ή ܸ ሺʹʹሻ

To remove the singularity effect, one method is to extract the averaged current density over certain volumes. In this method the current density is averaged over all the elements of the selected volumes as following:

where, is average current density, is current density in each element, is volume of each element. Two different volume averaging approaches are studied. In the first mesh sizes are tabulated in Table 1. As the mesh size is reduced by a factor of four, the maximum current density has increased by 24%. The average current densities calculated in the bottom disk for all the mesh schemes are the same. It is observed that the averaging has decreased the current density value in bottom disk by 56% compared to the maximum current density (in the case of 'X/4' mesh size).

Figure 12 Current density contours with different meshes in the bottom disk

Table 1 The Maximum and Average Current Densities Calculated in Bottom Disk for Different Mesh Sizes

Table 2 summarizes all the averaged current density values calculated for all thicknesses ($p/r = 0.2$, 0.4 and 0.6) of crescents with differen